

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 Gradian States
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

OUTLINE

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
- Gravity System
- Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

INTRODUCTION

Presentation Outline

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Building Statistics

- Natatorium Complex
- Location: York, PA
- Occupant: YMCA of York and York County
- Occupancy Type: Assembly
- Size: 37,000 SF
- Height: 53'-0"
- Not Constructed
- Cost: \$13 Million (Estimate)
- Structural Engineer: Nutec Design Associates, Inc.

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
- Gravity System
- Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Architecture

- Curved Roof
- Large Glazed Curtain Walls
- Precast Concrete Panels
- Metal Wall Panels
- Standing Seam Metal Roof
- Façade Plant Climbing System

Presentation Outline

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

EXISTING STRUCTURE

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Gravity System

- Triangular Curved Steel HSS Trusses
 - Span 130'-0"
 - Spaced 30'-0" o.c.
 - Tapered Columns
- Steel HSS Columns
- Steel HSS Lobby Roof Trusses
 - Span 41'-0
 - Spaced 15'-0" o.c.
- 12" Precast Concrete Hollow Core Planks
- 12" CMU Interior Walls

Presentation Outline

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Lateral System

- North/South Direction:
 - Steel Braced Frames
 - Steel Moment Frames
- East/West Direction:

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

PROJECT GOALS

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
- Gravity System
- Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Problem

Original project over budget

Goals

- Create alternate design to better meet financial needs of owner (YMCA)
- Maintain architectural integrity of original design

Presentation Outline

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Solution

- Gravity System Design
 - King Post Truss System
 - Space Frame
 - Wood Truss System
- Lateral System Design
 - Concrete Moment Frames
 - Additional Perimeter Braced Frames

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

STRUCTURAL DEPTH

Presentation Outline Steel King Post Truss System • Introduction • Final Design: • Existing Structure - 20'-0" Depth • Project Goals - 30'-0" Spacing to Match Existing - 130'-0" Span • Structural Depth Study • More Cost Effective - Gravity System • Too Simple – Lateral System • Lacked Architectural Freedom • Architectural Breadth Study Building Enclosure Study • Conclusions • Questions

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Steel Space Frame

- Investigated 4', 8', and 12' Modules
- Various Depths
- Final Design: 8'-0" Modules with 8'-0" Depth
- Too Costly due to Number of Joints

Presentation Outline

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Wood Truss System

- Glulam most appropriate for 130'-0" span
 - Southern Pine Glulam I.D. #50
- Pressure treatment
- 10 PSF applied to bottom chord for speakers
- Decreased spacing required
- 15'-0", 10'-0", 8'-0" Column relocations
- SAP2000
 - Distributed loads applied to top and bottom chord

Loads Applied to Top Chord of Glulam Trusses	
DEAD	PSF
Zinc Standing Seam Metal Roof Panels	1.5
1/2" Moisture Resistant Gypsum Board	2.5
4 1/2" Rigid Insulation	6.75
3" Decking	7.6
Superimposed	5
Assumed Self Weight	5
Total	28.35
Use	30
LIVE	
L,	20
SNOW	
S	23.1

- 2005 National Design Specification for Wood Construction
- Controlling Load Combination: $D + L_r$
- Live: C_D = 1.0
 Snow: C_D = 1.15
 Wet Service Factor

Presentation Outline Glulam Truss Connections • 2005 National Design Specification for Wood Construction • Introduction • Bolted Steel Side Plates • Existing Structure - Constant width of truss members (6 %") Project Goals • Large Connections ($F \cong 50,000 \text{ lb}$) • Structural Depth Study • Considered Shear Plates – Gravity System (D) P STEEL PLATES ---– Lateral System -(24) TOA BOLTS • Architectural Breadth Study (24) TOA BOLTS - Building Enclosure Study Conclusions (2) T STEEL PLATES --Typical Top Chord Connection Questions Typical Bottom Chord Splice Connection

Presentation Outline Wind Loads Distribution of Loads • Introduction • Recalculated to account for new building shape and • Existing Structure increased height (60'-0") - Based on tributary areas • Project Goals • Structural Depth Study - Based on relative stiffness - Gravity System Seismic Loads • Recalculated to account for increased building weight • Architectural Breadth Study - Heavier roof system • Building Enclosure Study - Concrete moment frames • Conclusions • Questions

Presentation Outline Wood Braced Frame Other Possible Configurations Column Line 1 • Introduction • Existing Structure Project Goals • To replace original steel braced frame • Structural Depth Study Various configurations – Gravity System - Architectural considerations • Brace each glulam column • Controlling Load Combination: D + 0.75W + 0.75S • Architectural Breadth Study - Torsional effects included Building Enclosure Study • SAP2000 Conclusions • Questions

Presentation Outline Wood Braced Frame Other Possible Configurations Column Line 1 • Introduction • Existing Structure • Final Design: • Project Goals - 10 Separate Braced Frames • Structural Depth Study - 3 X-Braces Vertically per Frame - Gravity System – Member Size: 3 ½" x 6 7/8" Southern Pine Glulam Architectural Breadth Study • Building Enclosure Study • Conclusions • Questions

Presentation Outline Concrete Moment Frame • ACI 318-08 PCA Column Column Line 2 • Introduction • SAP2000 • Existing Structure Load patterns Project Goals • Columns: 24"x24" w/ (12) #8 • Increased column spacing • Structural Depth Study – Gravity System • Beams: 24"x30" - Negative-Moment Reinf: (10) #7 • Architectural Breadth Study - Positive-Moment Reinf: (8) #6 24'X24" COLUMN. TYPICAL Building Enclosure Study Conclusions • Questions H-d H-d H-d H-d

Presentation Outline Concrete Moment Frame • ACI 318-08 • SAP2000 East/West Direction • Introduction • Existing Structure • Columns: 24"x24" w/ (12) #8 • Beams: 24"x26" • Project Goals - Negative-Moment Reinf: (7) #7 • Structural Depth Study - Positive-Moment Reinf: (4) #7 - Gravity System (7) #7 – Lateral System Architectural Breadth Study • Building Enclosure Study • Conclusions • Questions Typical Beam

Presentation Outline Introduction Existing Structure Project Goals Structural Depth Study Gravity System Lateral System Architectural Breadth Study Building Enclosure Study Conclusions Questions Wood Braced Frames East/West Direction Typical Member Size: 6 %" x 6 7/8" Glulam Southern Pine

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Building Enclosure Study
- Conclusions
- Questions

ARCHITECTURAL BREADTH

Presentation Outline

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study Building Enclosure Study
- Conclusions
- Questions

Roof Shape and Facade

- Increase in height
- Vertical mullions vs. slanted mullions
- Modification to curved roof shape

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

BUILDING ENCLOSURE BREADTH

Presentation Outline

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Moisture and Thermal Control

- H.A.M. Toolbox
 - Indoor Temp = 75°F to 85°F
 - Relative Humidity = 50% to 60%
 - Location of dew point in wall or roof system
 Proper location of vapor barrier

Moisture and Thermal Control

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

- DensDeck
- Moisture-resistant roof board
- Performs well when exposed to high humidity
- Retains strength
- Precast Concrete Insulated Wall Panels
 - Used to enclose most of building
 - 8" thick
 - Condensation cannot form inside
 - Acoustical properties

Presentation Outline

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Glazing

- Solera-T Insulated Translucent Glazing Units
 - Large glass curtain walls enclosing indoor pool
 - Two lites of glass
 - High thermal performance insulating core
 Admit diffuse light

 - Very strong
 - 48"x96" panel capable of supporting 500 PSF

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

CONCLUSIONS

Presentation Outline

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

Conclusions

- The glulam truss system provides a cost effective alternative design for the natatorium
- Architectural integrity maintained with curved roof
- Natatorium properly designed for thermal and moisture control

Acknowledgements

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Questions

- Nutec Design Associates, Inc.
 - David Atkins
- YMCA of York and York County
- The Pennsylvania State University

 - Dr. Linda HanaganProfessor Kevin Parfitt
 - Professor Robert Holland
 - The entire AE faculty and staff

Presentation Outline

- Introduction
- Existing Structure
- Project Goals
- Structural Depth Study
 - Gravity System
 - Lateral System
- Architectural Breadth Study
- Building Enclosure Study
- Conclusions
- Questions

QUESTIONS